Plane Wave – normal incidence www.qwed.eu 1 Plane Wave – normal incidence Introduction The aim of the training given below is to point out main properties and behaviour of the plane wave propagating in an isotropic medium and incident normally at the media boundaries. 17 shows the display that should be seen. Introducing Textbook Solutions. 0000000707 00000 n ��mNq���B�j���Hc\��������t�?�-��X^� �w��DA'��>�s<�)a��%T���屬�z�˰�]#!�1>N@U�[�H@?��b�ȇ�+���=s��y��)�!h�=诮��Q�O�Y�e�C�5h���D����2N;?�t����� $��������PN�k�����5�q��hr�� -         Change the medium of section 2 to metal by editing Medium parameter of the section2 object (see Fig. 0000005058 00000 n The transmission coefficient also depends on the refraction indexes and it is the ration between the transmission field component and the incidence field component: If there is normal incidence, the following relation is met: The standing wave ratio is the relation between the maximum and the minimum values of the electric field: The following expressions are characteristics of a conductor medium: Phase velocity (meter/second): Propagation constant (radian/meter): In this case, the attenuation constant and the phase constant are equivalent (Neper/meter): The field components of the incident wave are: The field components of the reflected wave are: Therefore, the total components of the standing wave are: A plane wave with linear polarization arrives to a real conductor plane with a finite high conductivity. 0000002394 00000 n 894 0 obj<>stream 0000005650 00000 n H�b```f``������[��À �@����ș���Qmp���!v%����kgT�X"��D��-8#�M55���o�ޥb;�&m:s�&?m�Np��#{r�ZrkEf�i7�i��cu"��II�ص�c 0q Its name refers to the shape of a wave front (constant phase surfaces, perpendicular to the direction of propagation) of … C5 ����ӔL�`)X?��In��s�H!u�8�M�U(��ݸ? Your email address will not be published. 0000009939 00000 n 0000001069 00000 n The left-hand panel shows the wave polarization for which the electric field is parallel to the boundary, whereas the right-hand panel shows the wave polarization for which the magnetic field is parallel to the boundary. Reflection Coefficient and its Dependency on Angle of Incidence. c/$ The conductor may be considered to be a perfect conductor. 0000003254 00000 n 0000005257 00000 n 0000012448 00000 n 0000005573 00000 n This preview shows page 1 - 4 out of 39 pages. x��Y[�G�!0����m�ӜH;��� !�k%ON@{,�-���W=]U=��-8^�:U�]]������j�l���������nr����9��V�`҆�o'r=y���������X�WO����͋��?#�1s2���ߦ�a����72ik�P��=�β�{��a!����L��S�^v$J��1>5ߚB�3_�L��S�~ The incident electric and magnetic fields. h��y�/�CM�.��y�-��g��q˯��͸Т�W_���P�_�{?�YZ��&o�#J���Qo�6>�J]h��������Fm8�=�n}p�h�M�˧t�Z. Fig. It can be seen that there is no propagation in perfect metal. �U��30fCJz�t�p���m���[k�����L;pܓQ�G���!us�?v��[81wLe�nF����q�c���dcç|eLaL锳�Ɍ�=�sXcb�����a�|p���P���ɲ\�厑�\w�ry��cz\�l�]�u���rRLߓ�vW����~WU�&W6��۩l�r���N1~�x/�M��`:�O0ɑz�p*�v��\q��Zu�3��� c��)s�t:� �Oyư�|�h�'ǘn����q�O)�a�5u{K0�v�`�r�:`�N�����o�S�Á���+�U0}GS 0000002620 00000 n Leave a comment below! 1.2.2 Normal incidence of a plane wave on a perfect conductor surface. 0000002247 00000 n Assume that the incident wave ( , ) i i E H travels in a lossless medium (medium 1: 1 0 σ = ) and that the boundary is an interface with a perfect conductor … ��*�Jl�b�9� *!`R� �H�t�ߟ�?tN[Z�(n���'��X�f�h\����[�?��}U�;S*�_1�ԝ��]���b��>G��s���K5��8��}_h�)u!F�������,!�D����-3�@�Q��\o����ҳ^�����)�D��K��(K����9[Ι�d�U]�T�5b�ܭti"����"��D����/씷�R^E#O�0[����-N����c��l�p�ݫ��W�A��� ���q�0}��g���DD��^n�׺yBq%�a딐�$ H��T�n�0������|��^��C@F�$'r U����J�p�=������!� ���{�-w�Ks�o��}lvC[��R����1@�N�J�2%���k�L� The above values and conclusions may be confirmed in electromagnetic simulation. ��qhh� ��4�mI� S����JJ Hna���@��%�"�����O�2�UX��3�C��@��� endstream endobj 878 0 obj<> endobj 879 0 obj<> endobj 880 0 obj<>stream Hy. 0000004975 00000 n 0000058790 00000 n startxref 0000002783 00000 n H�|��n�0E��/[U�� $Ģ�E�(i�7�Y o. e −jkz H i =ˆ. Reflection of a Normally Incident EM Wave from a Perfect Conductor . 0000088169 00000 n 870 0 obj <> endobj endstream endobj 893 0 obj<>/Size 870/Type/XRef>>stream �® e�����2�:%�V��Y6s�ތR$��ɼ2I�U�9%#ɞ�A�;�ʘ�)5ɲ�f��39aj�ղ��z�e9�(�)�h�� țCc2J�lJ���xRr�+���iG��+M��^0̕+g�cD.�Yp_�v����!���#X��Hn=�I���.���E �_��� ��P*��0ŧ�2��. �Jg?3��埼��P��B�, 0000010657 00000 n Notify me of follow-up comments by email. =^t��Ѿ�Q���yoR�a.���h�}ڧn���p>:~7!�9�R�}�3�%W8���I�&���ȳ��p�VүZC�e^�:.0S|͎�,��5��NK�F�'�T����}j�RuxUX�q�z��L�y="�Һ �Ho��M%�� 2.5 where the incident wave travels in the, . ������C�� �!(w�? 0000012575 00000 n kz = − 2. πkz = −π kz = − 3. π/ 2. kz = −π/ 2 E. i =ˆ. Plane Wave Reflections at a Conductor Power and reflection coefficient at dielctric boundary. ���{:>�dѾ�]H^ �c��,qBo*��L�0evcDz��;��$�P)�p�jç�`����>��{yg���ݗ��u�=���& y�HV�۳WLH^b)4q����DU1]���.�$OѼdW���_���g��$p���޳����e���uh�%�Nߝ�{��i�p�SZ�Z#�0B���$�qC��Q9�.�Pm=�ڄ���z�-a����=ah �c�O�Of-pg���t���j�1%W�lam1ңXC}B��q� ơƑT�$��#���v4臋\��Pm���h�至�ч.[�t����!�glm��d������7��.�V�ȷ"�X�{���oZkwSY=�k�u��7��w���g8��j�|�|2���,=�^�̅�t}���|�peWgM,�{��V�}Y�?��������1�������a��E�. Fig. We regularly blog in our spare time. 0 2.5: Plane wave incident normally on a plane conducting boundary, Consider the situation in Fig. Required fields are marked *. In our case, σ is finite (the conductor is real as supposed to ideal), so the field won’t be zero. endstream endobj 41 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /FirstChar 32 /LastChar 254 /Widths [ 250 333 713 500 549 833 778 439 333 333 500 549 250 549 250 278 500 500 500 500 500 500 500 500 500 500 278 278 549 549 549 444 549 722 667 722 612 611 763 603 722 333 631 722 686 889 722 722 768 741 556 592 611 690 439 768 645 795 611 333 863 333 658 500 500 631 549 549 494 439 521 411 603 329 603 549 549 576 521 549 549 521 549 603 439 576 713 686 493 686 494 480 200 480 549 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 620 247 549 167 713 500 753 753 753 753 1042 987 603 987 603 400 549 411 549 549 713 494 460 549 549 549 549 1000 603 1000 658 823 686 795 987 768 768 823 768 768 713 713 713 713 713 713 713 768 713 790 790 890 823 549 250 713 603 603 1042 987 603 987 603 494 329 790 790 786 713 384 384 384 384 384 384 494 494 494 494 790 329 274 686 686 686 384 384 384 384 384 384 494 494 494 ] /Encoding 39 0 R /BaseFont /AMJBFM+MT-Symbol-Italic /FontDescriptor 38 0 R >> endobj 42 0 obj << /Type /FontDescriptor /Ascent 759 /CapHeight 677 /Descent -228 /Flags 6 /FontBBox [ -180 -293 1090 1010 ] /FontName /AMJBFO+MT-Symbol /ItalicAngle 0 /StemV 53 /XHeight 777 /CharSet (/equal/plus/ordfeminine/greater/hyphen/yen/fi) /FontFile3 43 0 R >> endobj 43 0 obj << /Filter /FlateDecode /Length 437 /Subtype /Type1C >> stream There are important applications where these two concepts are developed: And these are just some of the simplest applications. 1 + 21 12. cos sin cos sin kd j kd kd j kd. 6 0 obj 15) and remove with Delete option available under right mouse button. Destructive interference occurs when two waves are offset by a phase of ½ . e��+L��)/Ut�)�͙�xt�V$��"v�"WO�HxP���t�dc���J�2P��N���@�2P��@�2P��.��@I��@�2P����.����.��B���Jw����l&��ќ���W��|D3 leZ჏_}�/h:�6�܂�e&��;�^���������� YQ-7��N��'i}jJe�S�CLA9���)(���2�x���[tՐf�-���Э�^�$�JP��a�ʻ The following image shows the different wave components (incidence, reflection and transmission) that we are going to study in this post: The reflection coefficient from medium n1 to medium n2 (refraction indexes) can be expressed as the ration between the electric field reflection component and the electric field incidence component. -         Save the project with a new name. 0000005911 00000 n ]��4~pUo[v�qJ�d��� stream H�|W�n�H}�W�#X4�l��yp2����Ẽ74ՒФ�+����n���E���꺜:u����_�|�㳐�x�^NZ����Y�HDA.�@�$R�ۯ�>}�$V�8����������Wx��gB?W"�}����j�~TA�K��? View Reflection of Plane Waves.pdf from ETE 072 at Multimedia University of Kenya. xref %�쏢 ?^j��`��d�;)�ۉ}es�)*�8h2�UCX?�"��c�F3X`!�I%3����0L99CŨ��5�����3��� ����;~��y���0��kPU�����9���l�����~as��O�4���4�l�OTcR3XAS�&`@?$�M9y Ðf7�j�jj�jF� +��Η�Ч[���QX�/��-��B/��=�G!٢#U�6k76I��{@ �8�U��g�۫҈y��쾦���]\ |���F���O��W �|�ڃD���1U���zO��#���G�ߥ�9���0��ufq�_�+r9�����=c ��]�����c�3c͎���8:=���������$��.�N�'��;��,$�z�8~�ؔ>n^�����r����I���o%- Switch to excisting field component i.g. 0000006804 00000 n 0000002516 00000 n H�t�Qk�0������KJ���F�������Hr0̲�F���?y���C��N��r*���e�:��fٴяa�o���m�Hߺy���uvE*>�Os���eU��-mN��.�=�8��ߡq��I]�ǣ�md����)�΍�އi�.�6^��tS�*P-B���ɍ�5�f�̡i_�ʨ�އ�JkQ����(c(���(� 4�^e �@[� ��� 9# l����`��(K eg qƆ3,��_�1� \r8 �[���U�0���Q¼\��I� �i�- J�.��E�U �(�� �(�y.��s �h�� �E�L�E����^���� ^@�V���������i�c�Pw�4��bxl1�m�j�T����_ �!�O Save my name, email, and website in this browser for the next time I comment. 2. Incident wave reflected wave . By using the previous formulas, we have: Why did we study polarization in the previous post and now we study the incidence? Thus, we obtained the correct answer because we were able to independently determine that η 2 = 0 in a perfect conductor. Run the simulation by pressing  button in Simulation tab. x�bbz�����8�f�;��1�G�c4>F�h|��� 0 �� hh h h hh. <> {�f2MA'���ֈfT��l&C*8/#�7�h�uu����#���V�b��'�+�FO#��T���cE�d\�e��E��T~�L~��@y��o��E�2�E穛� �� �������v��߯�n`�o��/����v��߯�~:��4^��|���߯�n��K������k�:'��j˺���]߂��